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Abstract

We propose a metric to determine whether one version of a software system is more secure than
another with respect to the system’s attack surface. Rather than count bugs at the code level or
count vulnerability reports at system level, we measure a system’s attackability, i.e., how likely
the system will be successfully attacked. We define the attack surface of a system in terms of the
system’s attackability along three abstract dimensions: method, data, and channel. Intuitively, the
larger the attack surface, the more likely the system will be attacked, and hence the more insecure
it is. We demonstrate the use of the attack surface metric by measuring and comparing the attack
surface of two versions of a hypothetical IMAP server.

This research was sponsored by the Army Research Office under contract no. DAAD190110485 and DAAD19-
02-1-0389, the National Science Foundation under grant no. CCR-0121547 and CNS-0433540, and the Software
Engineering Institute through a US government funding appropriation. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the sponsoring institutions, the U.S. Government or any other entity.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2005 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2005 to 00-00-2005  

4. TITLE AND SUBTITLE 
An Attack Surface Metric 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Carnegie Mellon University,School of Computer 
Science,Pittsburgh,PA,15213 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

22 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Keywords: Security metric, entry point, exit point, attackability, attack class, attack surface,
attack surface metric



1 Introduction

Measurement of security, both qualitatively and quantitatively, has been a long standing challenge
to the research community, and is of practical import to industry today. Industry has responded
to demands for improvement in software security by increasing effort 1 into creating “more secure”
products and services. But how can industry determine if this effort is paying off? Our work is
motivated by the questions faced by industry today: Has industry’s effort made to make a system
more secure paid off? Is the most recent release of a system more secure than the earlier ones?
How can we quantify the results?

1.1 A New Metric

In this paper, we propose a metric to determine whether one version of a system is more secure
than another. Rather than measure the absolute security of a system, we measure its relative
security: Given two versions, A and B, of a system, we measure whether version A is more secure
than version B with respect to their attack surface. We do not use the attack surface metric to
determine whether a version of a system is absolutely good or bad, rather to determine whether
one version of a system is relatively better or worse than another.

Intuitively, a system’s attack surface is the ways in which the system will be successfully at-
tacked. We define the attack surface of a system in terms of the system’s resources. An attacker
uses a system’s resources to attack a system, hence a system’s resources contribute to the system’s
attack surface. Intuitively, the more resources available to the attacker, the more exposed the
attack surface. The more exposed the attack surface, the more ways the system can be attacked,
and hence the more insecure it is.

Given two versions, A and B, of a system, we compare their attack surface to determine whether
one is more secure than another. The attack surface measurements might be incomparable because
of the way we define attack surface along multiple dimensions. We can, however, use the attack
surface measurements along with the knowledge of the usage scenario of the system to determine
whether version A is more secure than version B. We illustrate this point with an example in Section
5.3.

1.2 Contributions and Roadmap

Our contributions in this paper are the following:

• We introduce the entry point and exit point framework to identify the resources that contribute
to a system’s attack surface.

• We introduce the notion of attackability to determine the attack surface contribution of a
resource. We define the attackability of a resource as a cost-benefit ratio to the attacker.

• We introduce the notion of attack classes for the convenience in defining the attack surface
of a system. We present formal definitions of attack classes, and attack surface in terms of a
state machine model of a system. We outline a general method to measure the attack surface
of a system.

1For example, Microsoft’s Trustworthy Computing Initiative.
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The rest of the paper is organized as follows. We compare our approach to related work in
Section 2. We introduce the entry point and exit point framework in Section 3. We present the
definitions of attackability, attack classes and attack surface in Section 4. We illustrate the use of
our attack surface metric in Section 5. We discuss possible avenues of future work in Section 6. We
summarize in Section 7.

2 Related Work

Michael Howard of Microsoft informally introduced the notion of attack surface for the Windows
operating system [12]. Pincus and Wing [13] further elaborated, and we [19] formalized Howard’s
Relative Attack Surface Quotient (RASQ) measurements for the Windows operating system. We
compare our work with prior work on attack surface in Section 2.1, and with other security metrics
in Section 2.2.

2.1 Attack Surface Metric

In our prior work, we define the attack surface of a system in terms of the system’s actions that
are externally visible to its users and the system’s resources that each action accesses or modifies
[19]. Every system action can potentially be part of an attack, and hence contributes to attack
surface. Similarly, every system resource also contributes to attack surface. Intuitively, the more
actions available to a user or the more resources accessible through these actions, the more exposed
the attack surface. Rather than consider all possible system resources, we narrow our focus on
a relevant subset of resource types. Attacks carried out over the years show that certain system
resources are more likely to be used in an attack than others. Hence we do not treat all system
resources equally. We categorize the system resources into attack classes based on a given set of
properties associated with the resources. These properties reflect the attackability of a type of
resource, i.e., some types of resources are more likely to be attacked than other types. We use the
notion of attack class to distinguish between resources with different attackability. These attack
classes together constitute the attack surface of a system.

We measured the attack surface of four different versions of the Linux operating system [19].
Howard et al. measured the attack surface of seven different versions of the Windows operating
system [13]. The results of both the Linux and Windows measurements confirm perceived beliefs
about the relative security of the different versions. We realized, however, that our attack surface
measurement method suffers from two major drawbacks: (1) there is no systematic way to identify
the relevant subset of system resources that can be used in an attack, and (2) there is no systematic
way to identify the set of properties associated with each resource. Hence it is difficult to identify
the attack classes of a system. In our Linux attack surface measurement work, we used the history of
attacks on Linux to identify the relevant subset of resources. Similarly, we relied on our knowledge
of the Linux operating system to identify the properties of interest. Howard et al.’s Windows
attack surface measurement method suffers from a similar drawback: there is no systematic way of
identifying the attack classes of the Windows operating system. Howard et al. used the history of
the attacks on Windows to identify twenty attack classes.

Our current work is motivated by the above mentioned difficulties in identifying the attack
classes of a system. We define the attack surface of a system in terms of the attackability of the
system’s resources. We use the entry point and exit point framework to identify the relevant subset
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of resources that contribute to the attackability of a system. We determine the attackability of
each resource using a cost-benefit ratio to the attacker. We group the resources into attack classes
based on their attackability. The attackability of these attack classes constitute the attack surface
of a system.

2.2 Other Security Metrics

Today we commonly use two measurements to determine the security of a system: at the code level,
we count the number of bugs found (or fixed from one version to the next), and at the system level,
we count the number of times a system version is mentioned in CERT advisories [7], Microsoft
Security Bulletins [15], MITRE Common Vulnerabilities and Exposures (CVEs) [16] etc. We argue
that both measurements, while useful, are less than satisfactory.

At the code level, many have focused on counting and analyzing bugs (e.g., [8], [11], [17],
[22]). Using bug counts as a security metric, however, has the following disadvantages: (1) the bug
detection process may miss some bugs and may raise false positives, and (2) equal importance is
given to all bugs, even though some bugs are easier to exploit than others.

Many organizations, such as CERT [7] and MITRE [16], and websites, such as SecurityFocus
[5], track vulnerabilities found in various systems. Counting the number of times a system appears
in these bulletins is not an ideal metric because it ignores the specific system configuration that
gave rise to the vulnerability, and it does not capture a system’s future attackability.

Our approach lies in between these two approaches: It is at a higher level abstraction than the
code level, implicitly giving importance to bugs based on ease of exploit. It is at a lower level of
abstraction than the entire system, linking vulnerabilities to specific system configurations. Our
attack surface metric strikes at the design level of a system: above the level of code, but below the
level of the entire system.

Butler [6] uses multi-attribute risk assessment method to obtain a prioritized list of threats to
an organization. The method ranks threats such as scanning, DDoS, and password nabbing based
on threat frequency and expected outcome. The method focuses on threats to an organization
rather than the software systems used in the organization.

Browne et al. [4] give a mathematical model to reflect the rate at which incidents involving
exploits of vulnerability are reported to the CERT. Beattie et al. [2] give a model for finding
the appropriate time for applying security patches to a system for optimal uptime. Both of these
studies focus on vulnerabilities with respect to their discovery, exploitation and remediation over
time, rather than a single system’s collective points of vulnerability.

There has been some work done in the area of quantitative modeling of the security of a system.
Brocklehurst et al. [3, 18] measure the operational security of a system by estimating the effort spent
by an attacker to cause a security breach in the system and the reward associated with the breach.
Alves-Foss et al. [1] use the System Vulnerability Index—obtained by evaluating factors such as
system characteristics, potentially neglectful acts and potentially malevolent acts—as a measure of
computer system vulnerability. Voas et al. [24] propose the minimum-time-to-intrusion (MTTI)
metric based on the predicted period of time before any simulated intrusion can take place. MTTI
is a relative metric that allows the users to compare different versions of the same system. Ortalo
et al. [21] model the system as a privilege graph [10] exhibiting its vulnerabilities and estimate
the effort spent by the attacker to attack the system successfully, exploiting these vulnerabilities.
The estimated effort is a measure of the operational security of the system. These works focus
on the vulnerabilities of a system as a measure of its security, where as we use the notion of the
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attackability of various resources of the system as a measure of its security. The approach of using
vulnerabilities as a measure of security fails to capture a system’s future attackability as it misses
out on future vulnerabilities. This approach also does not take into account a system’s design. Our
approach focuses on a system’s design, and hence can be used by system designers and developers
to improve the security of a system.

3 Entry Point and Exit Point Framework

Informally, entry points of a system are the ways through which data “enters” the system from
its environment, and exit points are the ways through which data “exits” from the system to its
environment. We know from the past that many attacks on software systems require the attacker
to either send data into the system, or receive data from the system. Hence the entry points and
the exit points of a system act as the entry points of attack on the system. We believe that the
identification of the entry points and exit points of a system is the important first step towards the
detection and prevention of such attacks. The entry point and exit point framework is a formal
framework to define the entry points and exit points of a system. We use the framework to identify
the resources that contribute to a system’s attack surface. We discuss possible future uses of the
framework in Section 6. We introduce a model of a system and its environment in Section 3.1.
We use the model to define the entry points and exit points. We give some auxiliary definitions
(interaction in Section 3.2 and relies on in Section 3.3) that we use later to define entry points in
Section 3.4 and exit points in Section 3.5.

3.1 Model

We consider a model with a set, S, of systems, a user, U , and a data store, D. For a given system,
s ∈ S, we define its environment, Es = 〈U, D, T 〉, to be a three-tuple where U is the user, D is the
data store, and T = S \ {s}, is the set of systems excluding s. We are interested in identifying the
entry points and exit points of every system s ∈ S. The system s interacts with its environment
Es, hence we define the entry points and exit points of s with respect to Es. Figure 1 shows a
system, s, and its environment, Es = 〈U, D, {s1, s2, }〉. We model every system s ∈ S as a state

DU

s

1 2

Es

s s

Figure 1: A system and its environment.

machine. A state machine, M =〈S, I, M, T〉 , is a four tuple where S is a set of states, I ⊆ S is a
set of initial states, M is a set of methods, and T ⊆ S × A × S is a transition relation. A state s ∈
S is a mapping of the variables to their values: s: Var → Val. A state transition, s × a × s’, is the
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invocation of a method m in state s resulting in state s’. We specify the actions by pre and post
conditions.

A method of a system receives arguments as input and returns result as output. We model the
access control list of the methods as a special state variable, acl ∈ domain(s). acl is a list of tuples,
〈m ,P 〉, where m is a method and P is a set of entities (other systems in S or the user U) that has
the invocation privilege on m.

Every system has a set of communication channels. The channels of a system s are the means
by which the user U or any system s1 ∈ T communicates with s. We model each channel as a
special state variable in domain(s). Each channel c has a type associated with it. The type of a
channel specifies the rules of communication. We model the access control list of the channels as a
special state variable, aclc ∈ domain(s). aclc is a list of tuples, 〈c , P 〉, where c is a channel and P is
a set of entities (other systems in S or the user U) that can communicate with s using the channel
c. We assume that we know the set of channels of every system s ∈ S. In practice, however, we
extract this information from the codebase of s.

We say an entity e can connect to a system s if s has a channel c such that 〈c , P 〉 ∈ aclc
and e ∈ P . We say an entity, e, can invoke a method m of s if e can connect to s, and e has the
invocation privilege on m. Given a system-environment pair 〈s, Es〉, a method m of s is an external
method if the user U or the methods of any system s1 ∈ T can invoke m. s’s API is simply the set
of its external methods. A method m is an internal method if only methods of s can invoke m. We
say “a system s invokes system s1’s API” to mean a method of s invokes an external method of s1.

The user U and the data store D are global with respect to the systems in S. We model the
data store D as a separate entity to allow sharing of data among all the systems in the environment.
The data store D is a set of typed data items. Specific examples of data items are files, cookies,
registry entries, and user accounts. Every data item d ∈ D has a set of methods based on its type.
We categorize these methods into the generic classes of read, write, create and delete methods. A
method can belong to more than one class. We say an entity “reads (writes etc.)” a data item d if
the entity invokes a method from the read (write etc.) class of d. Every data item d also has an
access control list, acl, of its methods. acl is a list of tuples, 〈m ,P 〉, where m is a method of d and
P is a set of entities (systems in S or the user U) that has the invocation privilege on m. Every
data item d also has a set of channels, and an access control list, aclc, of the channels. We say an
entity p can connect to a data item d if d has a channel c such that 〈c , P 〉 ∈ aclc and p ∈ P . We say
an entity e can read (write etc.) a data item d if e can connect to d, and e has invocation privilege
on a method from the read (write etc.) class of d.

For simplicity we assume only one user U present in the environment. U represents the adversary
who attacks the systems in S. U can invoke the external methods of the systems in S and the
methods of the data items in D. We say “U invokes a system s’s API” to mean U invokes an
external method of s.

Every system s ∈ S relies on a subset of systems of S in order to function in an expected
manner. s’s methods invoke the APIs of these systems. s’s methods also read, write, create and
delete data items in the data store D. We assume, for every method m of s, we know the APIs
that m invokes, and the data items that m reads, writes, inserts or deletes. In practice, however,
we extract this information from the code base of s.

In the following section, we use the above model of a system s and its environment Es to define
s’s entry points and exit points with respect to the given environment Es.
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3.2 Interaction Relations

The system s interacts with the entities present in its environment Es. Data items flow into and
out of the system s as a result of these interactions. The definitions of the interaction relations
formalize our intuition of data flow from the environment into the system s. The input interaction
relation captures all interactions that enable the user U (or the attacker) to send data into the
system s. Similarly, the output interaction relation captures all interactions that enable the user U
(or the attacker) to receive data from the system s.

3.2.1 Input Interaction Relation

Figure 2 shows different types of input interactions. If a system s input-interacts with a system
s1, then data flows from s into s1 (Fig 2(a)). If the user U input-interacts with a system s ∈ S,
then data flows from U into s (Fig 2(c)). The input interaction relation is transitive, but neither
reflexive nor symmetric.

U

API invocation
Data flow

s s

1 ss s

(a) (b)                                     (c)

1

Figure 2: Examples of input interactions.

(1) The system s can directly input-interact with system s1 ∈ T if (a) s can invoke s1’s API, and
pass data items as input to s1’s API (Fig 2(a)), or (b) s1 can invoke s’s API and receive data
items as result returned from s’s API (Fig 2(b)).

The system s can indirectly input-interact with system s2 ∈ T if there exists a system s1 ∈ T
such that (a) s can directly input-interact with s1 and s1 can directly input-interact with s2,
or (b) s can directly input-interact with s1 and s1 can indirectly input-interact with s2, or
(c) s can indirectly input-interact with s1 and s1 can indirectly input-interact with s2.

Definition 1. The system s input-interacts with system s1 ∈ T if s can input-interact directly
or indirectly with s1.

(2) The user U can directly input-interact with the system s if U can invoke s’s API and pass
data items as input to s’s API (Fig 2(c)).

The user U can indirectly input-interact with system s if (a) there exists a data item d such
that s reads d from the data store D and U can write d to the data store D, or (b) there
exists a system s1 ∈ T such that U can directly input-interact with s1 and s1 input-interacts
with s, or (c) U can indirectly input-interact with s1 and s1 input-interacts with s.
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Definition 2. The user U input-interacts with system s if U can directly or indirectly input-
interact with s.

3.2.2 Output Interaction Relation

Figure 3 shows different types of output interactions. If a system s output-interacts with a system
s1, then data flows from s1 into s (Fig 3(a)). If the user U output-interacts with a system s ∈ S,
then data flows from s into U (Fig 3(c)). The output interaction relation is transitive, but neither
reflexive nor symmetric.

U

API invocation
Data flow

s s

1 ss s

(a) (b)                                     (c)

1

Figure 3: Examples of input interactions.

(1) The system s can directly output-interact with system s1 ∈ T if (a) s can invoke s1’s API, and
receive data items as result returned from s1’s API (Fig 3(a)), or (b) s1 can invoke s’s API
and pass data items as input to s’s API (Fig 3(b)).

The system s can indirectly output-interact with system s2 ∈ T if there exists a system s1 ∈ T
such that (a) s can directly output-interact with s1 and s1 can directly output-interact with
s2, or (b) s can directly output-interact with s1 and s1 can indirectly output-interact with s2,
or (c) s can indirectly output-interact with s1 and s1 can indirectly output-interact with s2.

Definition 3. The system s output-interacts with system s1 ∈ T if s can output-interact
directly or indirectly with s1.

(2) The user U can directly output-interact with the system s if U can invoke s’s API and receive
data items as result returned from s’s API (Fig 3(c)).

The user U can indirectly input-interact with system s if (a) there exists a data item d such
that s writes d to the data store D and U can read d from the data store D, or (b) there exists
a system s1 ∈ T such that U can directly output-interact with s1 and s1 output-interacts
with s, or (c) U can indirectly output-interact with s1 and s1 output-interacts with s.

Definition 4. The user U output-interacts with system s if U can directly or indirectly
output-interact with s.
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3.3 Relies On Relation

The system s depends on many other systems in its environment Es to function in an expected
manner. The definition of the relies on relation formalizes this dependency between s and other
systems in its environment. Relies on relation is transitive, but neither reflexive nor symmetric.

(1) The system s directly relies on a system s1 ∈ T if s invokes s1’s API.

(2) The system s indirectly relies on a system s2 ∈ T if there exists a system s1 ∈ T such that
(a) s directly relies on s1 and s1 directly relies on s2, or (b) s directly relies on s1 and s1

indirectly relies on s2, or (c) s indirectly relies on s1 and s1 indirectly relies on s2.

Definition 5. The system s relies on a system s1 ∈ T if s directly or indirectly relies on s1.

3.4 Entry Points

The methods of the system s that receive data items from s’s environment as input are s’s entry
points . A method m of s can receive data directly or indirectly from the environment.

Definition 6. A method m receives a data item d directly if (a) m receives d as input or, (b) m
reads d from the data store, or (c) m invokes a system s1’s API and receives d as result returned
from s1’s API.

Definition 7. A method m receives a data item d indirectly if a method m1 of s receives d directly
and passes d as input to m.

The systems on which s relies on can also pass data into s, and hence act as s’s entry points.

Definition 8. A direct entry point of the system s is a method m of s such that (a) the user U
can invoke m (Figure 4(a)), or (b) a system s′ ∈ T can invoke m, and U input-interacts with s′

(Figure 4(b)), or (c) m reads a data item d from the date store and the user U can write d to the
data store D (Figure 4(c)), or (d) m invokes the API of a system s′ on which s relies, and the user
U input-interacts with s′ (Figure 4(d)).

U

API invocation
Data flow

m

s’

m

D

m m

s’

(a)                                               (b)                                         (c)                                     (d)

Figure 4: Direct Entry Point.

Definition 9. An indirect entry point of the system s is a method m of s such that (1) m is not
a direct entry point of s, and (2) a direct entry point m1 of s invokes m, and passes data items
received by it to m as input (Figure 5(a)), or (3) an indirect entry point m2 of s invokes m, and
passes data items received by it to m as input (Figure 5(b)).
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(a)

(b)

Data flow

 m

m

m1 m1

m2

API invocation

Figure 5: Indirect Entry Point.

Definition 10. The set of system entry points of the system s is the disjoint union of the set of
direct entry points and the set of indirect entry points of s.

Definition 11. The set of infrastructure entry points of the system s is the union of the set of
direct entry points of all systems s′ such that s relies on s′, and the user U input-interacts with s′.

3.5 Exit Points

The methods of a system s that return data items as result to s’s environment are s’s exit points.
The systems on which s relies can also receive data from s, and hence act as s’s exit points. A
method m of s can be both an entry point and an exit point of s.

Definition 12. A direct exit point of the system s is a method m of s such that (a) the user U
can invoke m, and receive data items as result returned from m (Figure 6(a)), or (b) a system
s′ ∈ T can invoke m and receive data items as result returned from m, and U output-interacts with
s′ (Figure 6(b)), or (c) m writes a data item d to the data store and the user U can read d from the
data store D (Figure 6(c)), or (d) m invokes the API of a system s′ on which s relies and passes
data items as input to s′’s API, and the user U output-interacts with s′ (Figure 6(d)).

U

API invocation
Data flow

m

s’

m

D

m m

s’

(a)                                               (b)                                         (c)                                     (d)

Figure 6: Direct Exit Point.
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Definition 13. The set of system exit points of the system s is the set of direct exit points of s.
Notice that a system does not have indirect exit points.

Definition 14. The set of infrastructure exit points of the system s is the union of the set of direct
exit points of all systems s′ such that s relies on s′, and the user U output-interacts with s′.

3.6 Untrusted Data

A successful attack on the system s requires the user U (or the attacker) to send (receive) data into
(from) s. U can send (receive) data into (from) s directly by invoking a method of s, or indirectly
using the persistent data items of the global data store D. The methods of s act as entry points
of attack in the former case, whereas the persistent data items act as the entry points in the latter
case. For example, s might read a persistent data item d from the data store D after U writes d
to the data store. Similarly, U might read a persistent data item d from the data store D after
s writes d to the data store. Hence the persistent data items enable the user U to send (receive)
data into (from) s, and act as the entry points of attack. The user U (or the attacker) can use a
persistent data item d in an attack if U can read or write d. Hence those persistent data items of
s that U can read or write are the untrusted data items. The user U (or the attacker) can attack
the system s if s has untrusted data items.

Definition 15. An untrusted data input of the system s is a persistent data item d such that a
direct entry point of s receives d, and the user U can write d to the data store D.

Definition 16. An untrusted data output of the system s is a persistent data item d such that a
direct exit point of s writes d to the data store D, and the user U can read d from the data store
D.

Definition 17. The set of untrusted data items of the system s is the disjoint union of the set of
untrusted data inputs and the set of untrusted data outputs of s.

3.7 Open Channels

A successful attack on the system s requires the user U (or the attacker) to connect to s using a
communication channel. Recall from Section 3.1 that U can connect to s using a channel c if the
tuple 〈c , U〉 belongs to the channel access control list,aclc, of s. The channels of s that U can use to
connect to s directly or indirectly are the open channels. The user U (or the attacker) can attack
the system s if s has open channels.

Definition 18. An open channel of a system s is a channel c of s such that (a) the user U can
connect to s through c, or (b) a system s′ ∈ T can connect to s through c, and U either input-
interacts or output-interacts with s.

4 Attack Surface Definitions

In this section, we give the definitions of attackability, attack class, and attack surface in terms of
our model introduced in Section 3.1. We define the attack surface of a system in terms of resources.
A resource of a system is either a method of the system, a channel of the system, or a data item
in the global data store. We identify the accessible subset of resources that contribute to attack
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surface using the entry point and exit point framework introduced in Section 3. We define the
attackability of a resource using a cost-benefit ratio in Section 4.2. We give the definition of attack
class in Section 4.3 and attack surface in Section 4.4. We introduce our attack surface measurement
method in Section 4.5.

4.1 Accessible Resources

In our model, some resource of a system might not contribute to the attack surface of the system.
Only those resources of a system that the attacker can use in an attack contribute to the system’s
attack surface. A resource’s access rights determine whether the attacker can use the resource in
an attack. A successful attack requires the attacker to connect to the system, invoke the system’s
methods, and send (receive) data into (from) the system. We consider only entry point attacks
and exit point attacks, i.e., attacks that require the attacker to either send data into the system or
receive data from the system. Hence the attacker uses a channel in an attack if the attacker can
connect to the system through the channel. Similarly, the attacker uses a method in an attack if
the attacker can send (receive) data items into (from) the system by invoking the method, and the
attacker uses a data item in an attack if the attacker can send (receive) the data item into (from)
the system.

We use the entry point framework to identify the relevant subset of resources that contribute to
a system’s attack surface. By definition, the set of system entry points (exit points) are the methods
that the attacker can invoke to send (receive) data into (from) the system. The set of open channels
are the channels that the attacker can use to connect to the system. The set of untrusted data
items are the data items that the attacker can send (receive) into (from) the system. Hence the set
of system entry points and system exit points, the set of open channels, and the set of untrusted
data items are the resources that contribute to the system’s attack surface.

4.2 Attack Weights of Resources

In our model, not all resources are equally likely to be used in an attack, hence not all resources
contribute equally to a system’s attack surface. Some resources are more likely to be used in an
attack than others, e.g., a method running as root is more likely to be attacked than a method
running as non-root. The attackability of a resource is the likelihood of the resource being used in
an attack. We define the attackability of a resource in terms of a cost-benefit ratio to the attacker
in using the resource in an attack. The benefit to the attacker is in terms of the damage potential
of a resource, i.e., how much damage the attacker can do to the system by using a resource in an
attack. The cost to the attacker is in terms of the effort required to use a resource, i.e., the effort
the attacker spends to acquire the necessary access rights in order to be able to use a resource in
an attack. The higher the benefit, the higher the attackability, and the higher the cost, the lower
the attackability.

We define damage potential and effort in terms of the attributes of a resource. The definitions
depend on the type of the resource, i.e., method, channel, or data. We define damage potential and
effort based on our intuition and experience of a system. We leave for future work a more formal
characterization and justification of our notion of damage potential and effort.
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4.2.1 Damage Potential

In our model, the attacker uses a method in an attack by exploiting a vulnerability in the method.
The attacker gains the same privilege as the method by exploiting a vulnerability in the method. For
example, the attacker gains root privilege by exploiting a buffer overrun vulnerability in a method
running as root. The attacker can cause damage to the system after gaining root privilege. We
propose that the the damage that the attacker can do to the system depends on the method’s
privilege. So the damage potential of a method depends on the method’s privilege.

In our model, the attacker uses communication channels to connect to a system, and send
(receive) data to (from) a system. A channel’s type imposes restriction on the data exchange
allowed using the channel, e.g., a socket allows raw bytes to be exchanged where as a RPC end
point does not. We informally propose that the damage the attacker can do to a system using a
channel depends on the restriction imposed by the channel’s type. Hence the damage potential of
a channel depends on the channel’s type.

In our model, the attacker uses persistent data items to indirectly send (receive) data into (from)
a system. A persistent data item’s type imposes restriction on the data exchange, e.g., a file can
contain executable code whereas a registry entry can not. The attacker can send executable
code into the system by using a file in an attack, but the attacker can not do the same using a
registry entry. We informally propose that the damage the attacker can do to a system using a
persistent data item depends on the restriction imposed by the data item’s type. Hence the damage
potential of a persistent data item depends on the data item’s type.

4.2.2 Effort

The attacker can use a resource in an attack if the attacker has required access rights. The attacker
spends effort to acquire these access rights. The effort required to acquire an access right level of
a system is proportional to the difference between the access right level and the lowest access right
level of the system. Hence the effort the attacker needs to spend to use a resource in an attack
depends on the access rights of the resource.

4.2.3 Attackability

We define the attackability of a resource in terms a cost-benefit ratio.

Definition 19. The attackability of a resource, r, with damage potential, dp, and access rights, ar,
is dp

ar .

Hence the attackability of a method is privilege
access rights , the attackability of a channel is type

access rights ,
and the attackability of a data item is type

access rights . Note that the cost-benefit ratio is a symbolic
ratio rather than a numeric ratio.

4.3 Attack Class

An attack class is a set of methods, or a set of channels, or a set of data items such that each
member of the set has the same attackability. We assume we have a system, s, and its environment,
Es = 〈U,D, T 〉. We use entry point analysis to identify a set, M , of system entry points and system
exit points, a set, C, of open channels, and a set, I, of untrusted data items.
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Definition 20. A system attack class of the system s is a subset of the set M such that every
method belonging to the subset has the same privilege and access rights.

Definition 21. A channel attack class of the system s is a subset of the set C such that every
channel belonging to the subset has the same type and access rights.

Definition 22. A data attack class of the system s is a subset of the set I such that every data
item belonging to the subset has the same type and access rights.

Definition 23. The attackability, ac(A), of an attack class A is the total attackability of the
members of A.

4.4 Attack Surface

We define the attack surface of a system in terms of the system’s attackability, i.e., the total
attackability of the system’s resources. Each resource of a system that belongs to an attack class
contributes to the total attackability of a system. The attackability contributions of a method,
however, is different than the attackability contribution of a data item or a channel. The numeric
values of the attackability of a method and the attackability of a channel might be same, but the
units of attackability are different. Hence we compute the total attackability of a system along three
dimensions: method, channel, and data . The total attackability along a dimension is the sum of
the attackability of all the attack classes along that dimension. The attackability of a system along
these three dimensions define the system’s attack surface.

We assume we have a system, s, and its environment, Es = 〈U,D, T 〉. We use entry point
analysis to identify a set, M , of system entry points and exit points, a set, C, of open channels,
and a set, I of untrusted data items. We group the methods in M into the set, SAC, of system
attack classes. We group the channels in C into the set, CAC, of channel attack classes. We group
the data items in I to the set, DAC, of data attack classes.

Definition 24. The system attackability, SA, of the system s is the total attackability of the attack
classes ∈ SAC.

Definition 25. The channel attackability, CA, of the system s is the total attackability of the
attack classes ∈ CAC.

Definition 26. The data attackability, DA, of the system s is the total attackability of the attack
classes ∈ DAC.

Definition 27. The attack surface of the system s is the three-tuple 〈SA,CA,DA〉.

4.5 Attack Surface Measurement Method

In this section we outline a general method to measure the attack surface of a system. We base
our method on our formal model and definitions described in earlier sections. We assume we have
a a system, s, and its environment, Es = 〈U,D, T 〉.

1. We identify the set, M , of system entry points and system exit points, the set, C, of open
channels, and set, I, of untrusted data items of s.
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2. We group the methods in M into the set, SAC, of system attack classes, the channels in C
into the set, CAC, of channel attack classes, and the data items in I to the set, DAC, of
data attack classes based on their attackability.

3. We compute the total system attackability, SA, the total channel attackability, CA, and the
total data attackability, DA.

4. The attack surface of s is 〈SA,CA,DA〉.

5 An Example Attack Surface Metric

In the previous sections, we have outlined a generic qualitative method for determining the at-
tackability of a resource, and the attack surface of a system. We describe a specific quantitative
method for computing the attackability of a resource in Section 5.1. Our quantitative method is
one of several possible ways of quantifying attackability. We use the attackability computation
described in Section 5.1 to quantitatively measure the attack surface of a system in Section 5.2.
We demonstrate the use of our attack surface metric in Section 5.3.

5.1 Attackability Computation

We define simple metrics to measure the damage potential and the effort so that we can determine
the attackability of a resource. A simple such metric would be a natural number. We describe a
method of assigning numeric values to damage potential and effort. Since damage potential and
effort depend on attributes of a method or a resource, we assign numeric values to the following
attributes: the privilege levels of methods, the types of channels, the types of data items, and the
access right levels. In practice, the users of our attack surface metric will assign these numeric
values based on their experience of a system.

We assume there is a total ordering, TOp, among the set, P, of privilege levels of the methods.
It is natural to associate a total order among the set of privilege levels, e.g., root > non-root.
The higher the privilege, the higher the damage potential.

We assume there is a total ordering, TOc, among the set, C, of types of the channels. Mehta
et al. [20] define four types of communication channels in their taxonomy of software connectors:
procedure call, event, data access, and stream. We assume the following order: stream >
procedure call > data access > event. The higher the channel type, the higher the damage
potential.

We assume there is a total ordering, TOt, among the set, T, of types of the persistent data
items. Specific examples of persistent data items are files, database records, cookies and
registry entries. We assume the following total order: files > database records > cookies
> registry entries. The higher the type, the higher the damage potential.

We further assume there is a total ordering, TOa, among the set, A, of access right levels. It
is natural to associate a total order among the set of access right levels, e.g., authenticated >
unauthenticated. The higher the access rights, the higher the effort.

We define a function BM : P → N to assign numeric values to privilege levels, a function
BD : T → N to assign numeric values to types of data items, a function BC : C → N to assign
numeric values to types of channels, and a function C : A → N to assign numeric values to access
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right levels. We assign numeric values in accordance to the total ordering such that the following
hold.

∀p1, p2 ∈ P.(p1 TOp p2) =⇒ (BM(p1) ≤ BM(p2))
∀t1, t2 ∈ T.(t1 TOt t2) =⇒ (BD(t1) ≤ BD(t2))
∀c1, c2 ∈ C.(c1 TOc c2) =⇒ (BC(c1) ≤ BC(c2))
∀a1, a2 ∈ A.(a1 TOe a2) =⇒ (C(a1) ≤ C(a2))

Definition 28. The attackability, ac(m), of a method m with privilege p and access rights a is
BM(p)
C(a) .

Definition 29. The attackability, ac(d), of a data item d of type t and access rights a is BD(t)
C(a) .

Definition 30. The attackability, ac(c), of a channel c with type t and access rights a is BC(t)
C(a) .

Definition 31. The attackability, ac(AC), of an attack class A is
∑

e∈A

ac(e) .

We consider a system s with the set {root, non-root} of privilege levels; the set {stream,
procedure call} of types of channels; the set {file, registry} of data item types; and the set
{unauthenticated, authenticated} of access rights. We assume the following total orders.

non-root < root
procedure call < stream

registry < file
unauthenticated < authenticated

We define the functions BM, BC, BD, and C as given below. We use these numeric values to

BM(non-root) = 1 BC(procedure call) = 1 BD(registry) = 1 C(anonymous) = 1
BM(root) = 4 BC(stream) = 2 BD(file) = 2 C(authenticated) = 2

compute the attackability of a resource of s, e.g., the attackability of a method running with
root privilege and unauthenticated access rights is 4

1 = 4, and the attackability of a file with
authenticated access rights is 2

2 = 1.

5.2 Attack Surface Measurement

In this section, we illustrate our attack surface measurement method described in Section 4.5 by
measuring the attack surface of a hypothetical IMAP server.

We consider a simple IMAP server, s. IMAP clients communicate with s using TCP sockets.
The clients can login to the server, list all the emails stored on the server, fetch an email from the
server, and close the communication with the server. The server, s, stores configuration information,
and user email as files on the file system.

The server, s, has the set {root, imapd} of privilege levels; the set {stream} of channel types;
the set {file} of data item types; and the set {unauthenticated, authenticated, root} of access
rights.
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Step 1 of our attack surface measurement method requires us to identify the set of entry
points and exit points, the set of open channels, and the set of untrusted data items. In this
example, we assume we are given the set {login, list, fetch, close} of entry points and exit
points; the set {port 143, port 993} of open channels; and the set {/etc/passwd, /etc/shadow,
/etc/imapd.conf, /var/lib/imap/user } of untrusted data items.

In Step 2, we group the above identified resources into attack classes based on their attackability.
The method login runs with root privilege and unauthenticated access rights. The methods
list, fetch, and close run with imapd privilege and authenticated access rights. The channels
port 143 and port 993 have stream type, and unauthenticated access rights. The data items
/etc/shadow and /etc/imapd.conf have file type, and root access rights. The data items
/etc/passwd and /var/lib/imap/user have file type, and authenticated access rights. We
group the resources into the set {sac1, sac2} of system attack classes, the set {cac1} of channel
attack classes, and the set {dac1, dac2} of data attack classes. We show the attack classes in Table
1.

sac1 { login}
sac2 { list, fetch, close}
cac1 { port 143, port 993 }
dac1 { /etc/shadow, /etc/imapd.conf }
dac2 { /etc/passwd, /var/lib/imap/user }

Table 1: Attack Classes of s

In Step 3, we compute the total attackability of s along the three abstract dimensions of method,
channel, and data item. We assign numeric values to privilege levels, channel types, data item types,
and access rights levels as shown in Table 2. We compute the attackability of a resource and the

Privilege Channel Type Data Item Type Access Rights
imapd 1 stream 1 file 1 unauthenticated 1
root 2 authenticated 2

root 3

Table 2: Numeric Values

attackability of an attack class as defined in Section 5.1. We show the attackability of attack classes,
and the total attackability of s in Table 3.

System Attack Classes Channel Attack Classes Data Attack Classes
sac1 2 cac1 2 dac1 0.66
sac2 1.5 dac2 1
System Attackability 3.5 Channel Attackability 2 Data Attackability 1.66

Table 3: Total Attackability of s

In Step 4, we obtain the attack surface of s as the triple 〈3.5, 2, 1.66〉.
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5.3 Attack Surface Metric

In this section, we compare the attack surface of two IMAP server implementations. We assume
we have two IMAP servers: s (introduced in Section 5.2) and s′. s′ is similar to s except that s′

has only one privilege level, i.e., root. Hence the methods list, fetch, and close of s′ run with
root privilege, and the data items /etc/passwd and /var/lib/imap/user of s′ have root access
rights. We show the attack classes of s′ in Table 4. We show the attackability of attack classes and

sac1’ { login}
sac2’ { list, fetch, close}
cac1’ { port 143, port 993 }
dac1’ { /etc/shadow, /etc/imapd.conf, /etc/passwd, /var/lib/imap/user }

Table 4: Attack Classes of s′

the total attackability of s′ in Table 5. The attack surface of s′ is the triple 〈5, 2, 1.33〉.

System Attack Classes Channel Attack Classes Data Attack Classes
sac1 2 cac1 2 dac1 1.33
sac2 3
System Attackability 5 Channel Attackability 2 Data Attackability 1.33

Table 5: Total Attackability of s′

Hence s has less system attackability and more data attackability compared to s′. Both s and s′

have the same channel attackability. Hence s is more secure with respect to the method dimension,
and less secure with respect to the data dimension compared to s′. Both s and s′ are equally secure
with respect to the channel dimension.

In this case, we can not determine whether one version of the IMAP server is more secure than
the other by comparing their attack surface. It is not possible to decide which version of the server
to use simply by looking at the attack surface measurements. The usage scenario of the IMAP
server, however, helps us in making a decision. We choose version s of the IMAP server if method
attackability presents higher risk compared to data attackability, else we choose version s′. For
example, if the files of the IMAP server reside on a secure file system such as Microsoft’s EFS [14],
the attacker is more likely to attack the IMAP server using the methods rather than the files. In this
case, method attackability presents higher risk compared to data attackability. Hence we choose
version s of the IMAP server. On the other hand, if the email files contain sensitive information
and no secure file system is available, then data attackability presents higher risk. Hence we choose
version s′ of the IMAP server.

6 Future Work

We discuss four possible directions for future work in this section. We plan to implement a tool that
will use the entry point and exit point framework to automatically identify the set of entry points
and exit points, the set of open channels, and the set of untrusted data items from the source code
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of a system. The tool will help us automate the attack surface measurement method described in
Section 4.5. The entry points and exit points of a system act as the entry points for attacks, hence
we can use the tool to identify the parts of the code where we should focus our attention to make
a system more secure.

Our definition of attackability in Section 4.2 is based on intuition and experience. We plan to
characterize attackability more formally in terms of our model described in section 3.1. We use a
state machine to represent a system in our model. A formal definition of attackability of a system’s
resources will be in terms of the execution traces of the state machine representing the system.

We plan to explore the usefulness of the entry point and exit point framework in the threat
modeling process [23]. Threat modeling is a systematic way of identifying and ranking the threats
that are most likely to affect a system. By identifying and ranking threats, we can take appropriate
countermeasures, starting with threats that present highest risk. The identification of entry points
and exit points is an important step in the threat modeling process. The process, however, lacks
a systematic way of performing this step. The users of the threat modeling process rely on their
expertise and knowledge of a system to correctly identify the entry points and exit points. We
propose to use the entry point framework to formalize this step in the threat modeling process.

Our current attack surface measurement method assumes that the source code of a system is
available. Prior work on attack surface measurement ([12], [13], [19]) did not require the source
code of a system. We plan to extend our current method such that we can approximate the attack
surface of a system when the source code is not available.

7 Summary

We lack a good metric for measuring a software system’s security (e.g., see CRA Grand Challenge
# 3 [9]). In this paper, we have proposed a metric to determine whether one version of a system
is more secure than another. Our security metric is based on the notion of attack surface. We view
our work as a first step towards a meaningful and practical metric for security measurement. We
believe that the best way to begin is to start counting what is countable and then use the resulting
numbers in a qualitative manner. We believe that our understanding over time would lead us to
more meaningful and useful quantitative metrics for security measurement.
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